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The likelihood of the occurrence of multiple-diffraction effects is discussed. The number and distri- 
bution of Umweganregung peaks are calculated from geometrical considerations. The effect of multiple 
diffraction on integrated intensities taken under conditions when many reflexions are simultaneously 
excited is estimated within the framework of the secondary-extinction theory. 

Introduction 

Considerable attention has been paid in recent years 
to the effects of multiple diffraction on intensity meas- 
urements in single-crystal X-ray and neutron diffrac- 
tometry. In their most striking manifestation, these ef- 
fects give rise to reflexions that are space-group for- 
bidden by the Umweganregung process first described 
by Renninger (1937). The effects on normal reflexions 
are less dramatic but may still produce appreciable er- 
rors in observed intensities (Lipson & Cochran, 1953; 
Speakman, 1965). 

Multiple diffraction occurs when more than one 
reciprocal-lattice point lies very close to the surface of 
the Ewald sphere. Geometrical aspects of the problem 
have been considered by Santoro & Zocchi (1964), 
Willis (1962), Burbank (1965), and others. Cole, Cham- 
bers & Dunn (1962) have derived the mathematical 
conditions that must be satisfied for multiple diffrac- 
tion to occur; their procedure for indexing Umwegan- 
regung peaks in simple cases can be easily extended to 
indexing multiple diffraction scans in general. 

The intensities of these effects have been discussed 
by Moon & Shull (1964) and Zachariasen (1965). 
Moon & Shull obtained good agreement between the- 
ory and their experimental results for neutron diffrac- 
tion, from specimen crystals in the form of plane par- 
allel plates. These authors have shown that the errors 
due to multiple diffraction are proportional to the sec- 
ondary-extinction corrections; for example when the 
reftexions involved are all equally strong, corrections 
for single, double, triple and quintuple diffraction are 
in the ratios 1 : 1.5:2:3 (Zachariasen). 

Multiple-diffraction effects may be frequently en- 
countered in crystallographic studies. They may lead 
to appreciable errors in experimental structure factors 
(Panke & WNfel, 1968). Consequently, procedures 
should be devised to eliminate these effects or at least 
to estimate their magnitude. With the four-circle dif- 
fractometer it is often possible to avoid multiple dif- 
fraction by exploiting the degree of freedom that re- 
mains, once a specified reciprocal-lattice point has been 

constrained to lie on the surface of the Ewald sphere. 
The crystal may then be rotated about the scattering 
vector of this reflexion to obtain an optimal azimuth, 
i.e. one for which multiple-diffraction effects are mini- 
mal or, in favourable cases, absent (Santoro & Zocchi). 
Coppens (1968) has described a procedure for finding 
azimuthal positions at which measurements free from 
multiple-diffraction perturbations due to strong re- 
flexions may be made. The necessity for weakening the 
constraint on the crystal's orientation to positions free 
only from perturbations due to strong reflexions is a 
result of the decrease, with increasing cell volume, of 
the probability of finding a position entirely free from 
any perturbations. 

In the following paragraphs we discuss multiple dif- 
fraction in the case of crystals with unit-cell dimensions 
that are large compared to the wavelength. The stati- 
stical probabilities governing the occurrence of mul- 
tiple diffraction are then high, and we can obtain sta- 
tistically averaged estimates for the errors likely to be 
incurred in intensity measurements. 

Multiple diffraction probabilities 

Consider a crystal oriented with respect to a mono- 
chromatic beam such that a nominated set of planes 
corresponding to the reciprocal-lattice point H is in the 
diffracting position. Now consider that the direction 
of incidence (unit vector uo) precesses about the scatter- 
ing vector H so that the Bragg condition for the reflec- 
tion H is continuously satisfied: the centre of the Ewald 
sphere generates a circle C, while the surface of the 
Ewald sphere sweeps out a volume of reciprocal space 
v* (see Fig. 1). Every reciprocal lattice point Kl within 
this volume will have fal!cn on the surface of the Ewald 
sphere for two orientations; thus, it will have satisfied 
the geometrical conditions for simultaneous diffraction 
by the planes H and K~. 

When the wavelength is small compared with the 
unit-call dimensions of the crystal, the approximate 
number of possible multiple-diffraction situations may 
be calculated from a knowledge of the wavelength, cell 
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volume, and Bragg angle of the reflexion H: 

N=2v*/V* 

=4ZC2 V2 -3 cos 0It, (1) 

where V*=  1/Vis the reciprocal cell volume. The argu- 
ment is unaffected if the direction of incidence is fixed 
while the crystal is rotated about H. 

Considering only a representative member of the set 
K~ and dropping the subscript, let us refer to K as the 
secondary or operative reflexion and H as the primary 
reflexion. Multiple diffraction between H and K impli- 
citly involves a third set of planes, the Cooperative re- 
flexion K',  whose reciprocal-lattice vector is given by 

K ' = H - K .  

A further condition for multiple diffraction to occur 
is that at least two of H, K and K'  have non-zero struc- 
ture factors; the condition for the effect to be signific- 
ant is that at least two are moderately intense reflexions. 
Thus, the number of possible multiple-diffraction peaks 
suggested by equation (1) must be reduced by a factor 
(a11) that accounts for the various types of forbidden 
reflexions, which have been discussed by Kottwitz 
(1968). For  example, in the diamond structure (space 
group Fd3m), if H corresponds to a rigorously for- 
bidden reflexion of the type hkO where h and k are even 
and h + k = 4n + 2, or to a 'forbidden' reflexion of the 
type hkl where h, k and I are all even and non-zero, and 
h + k + l =  4n + 2, then N must be multiplied by ~. This 
value results from restricting operative reflexions to the 
type hkl where h, k and l are all odd; therefore, we re- 
write equation (1) in the form 

N11 = all .  2v*/V* . (2) 

Table 1 shows, for three common X-ray wavelengths, 
the number of Umweganregung peaks that might be 
observed in a complete rotation of a silicon crystal 
about the scattering vectors of several forbidden or 
'forbidden' reflexions: calculated from equation (2), 
and computed by a procedure similar to that of Cole, 
Chambers & Dunn. Peaks that are degenerate in the 
sense that two or more operative reflexions are simul- 
taneously favoured - Zachariasen's triple, quadruple, 
quintuple, etc. diffraction - have been counted as many 
times as they are degenerate. 

Based on the assumption that N11 is large and the 
cell dimensions are similar, we have derived the prob- 
ability density function which determines the distribu- 

tion of reciprocal-lattice points of potentially operative 
reflexions as a function of radial distance from the 
origin: 

u l / x ~ ' . ~  H 

i / _ . - / - - - 4  of c 
I c~'117"~ / Hil l  " " - ;  

' (a) 

t 

(b) 

Fig. 1. Rotation of Ewald sphere about scattering vector H. 
(a) Trace of the Ewald sphere in the diffraction plane and 
beam directions at two instants. (b) Volume v* =27r22-3 cos 
OH swept out by the surface of the Ewald sphere during a 
full rotation. Shaded axial region is excluded. 

Table 1. Number of  multiple diffraction peaks possible for silicon 

Ns estimated by means of equation (3); Arc computed by exhaustion procedure. Operative and cooperative reflexions have odd 
Miller indices. 

Primary Cu K~I 2= 1.5405 A Mo K~I 2=0.70926 A Ag K~I 2=0-55936 A 
reflexion 

H Ns Nc Ns Nc N~ Nc 
200 202 192 2192 2136 4486 4424 
222 196 180 2152 2220 4438 4500 
600 108 104 2036 2008 4290 4136 
666 - - 1620 1644 3810 3888 
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p(r)=8rcr z aH V cos OH [1-(rA/2)z] 1/z (3) 

where r = 2 sin 0K/2. This may be written in the form 

p(2 sin OK~2)= 32rCaHV2 -2 cos OH COS 0K sin z OK. 

Thus, the number of possible operative reflexions 
between sin OK and sin 0K + d(sin OK) is 

dNH=64rCaHV2 -2 cos OH cos OK sin 2 0Kd(Sin 0K), (4) 

and it may be verified that 
723,-1 

NH= 1o p(r)dr. 

Computation of the actual distribution for several of 
the primary reflexions of Table 1 yielded satisfactory 
agreement with the predictions of equation (4). 

The overwhelming importance of angular divergence 
in multiple diffraction has been emphasized by Post 
(1969), and is illustrated by the work of Williamson & 
Fankuchen (1959). For fairly perfect crystals the width 
of Umweganregung peaks is dominated by the vertical 
divergence (Colella & Merlini, 1966). If the plane wave 
previously considered is replaced by a beam having 
vertical divergence 6, we may expect that for an arbi- 
trary azimuth different rays will exactly satisfy the geo- 
metrical conditions for different operative reflexions. 
The number of operative reflexions that will be excited 
should be approximately 

Nn(6) = (6 sec On/2rC)NH . 

For divergences of 1-2 °, NH(5) may still be large; 
therefore, if the distribution in azimuth is fairly uni- 
form it may be impossible to find a setting of the crystal 
for which there is no multiple diffraction, and indeed 
the number of operative reflexions simultaneously ex- 
cited may be large. 

Intensity of multiple diffraction effects 

We assume that diffraction may be described in terms 
of the usual secondary-extinction theory. For single 
diffraction by a crystal of arbitary shape, Zachariasen 
obtains the following approximate expression for the 
integrated intensity of the diffracted beam: 

Pl ~- IovA[ Q Ipx - gQ~pll(o) T] (5) 

where I0 is the incident intensity of the monochromatic 
X-ray beam, v the irradiated volume of the crystal, A 
the transmission factor, QI the effective reflectivity, and 
pt and ply(0) are polarization factors for the once- and 
twice-scattered beams; g =  S[W(zI)]2dA, where W(A) is 
the distribution function of mosaic blocks in the crys- 
tal; T= AdA*/dlu is the mean-path length. For multiple 
diffraction the expression obtained by Zachariasen (ig- 
noring polarization) is 

Pt~-IovA[Q~+C~gT] 

where C~ involves the effective reflectivities of all the 
simultaneously excited reflexions, which for most cases 
he treats are symmetry-related. 

We consider the specific case of double diffraction by 
sets of planes unrelated by symmetry, so that the struc- 
ture factors IF~/I, IFKI and IFK'I are unrelated. The solu- 
tion for the integrated intensity of the primary beam is 
then 

Pit ~- IovA[Qit -½g(Oan TitH -- OitOKTit 1~ 
--QHQK, TItx, +QKQK, TxK,)] . (6) 

Lorentz and polarization factors have been temporarily 
neglected. The subscription of mean-path lengths sig- 
nifies that they are not necessarily equal, being depen- 
dent in principle on the different scattering angles as- 
sociated with the several terms. However, we shall as- 
sume the crystal to be spherical and absorption to be 
small or moderate, so that T~j is only weakly dependent 
on scattering angles: then the subscript may be dropped 
and the value of T for forward scattering can be used 
throughout. 

The change in the integrated intensity of the primary 
reflexion caused by double diffraction is 

APH"~_IovA½gT[-QHQK-QHQK,+QKQK,]. (7) 

The relative change is obtained by dividing equation (7) 
by the single diffraction expression, which we approx- 
imate by its zero-order (kinematic) term, IovAQH. 
Thus the relative change is 

R=APH/PH 
QKQK" 

=½gT'[--QK--QK'+ Q-----if-]. (8) 

R corresponds to the ratio RD in equation (19) of Moon 
& Shull for the case where only one secondary reflexion 
is excited. In their original notation the result obtained 
by these authors is 

[ Oo/o] iQ0,  R.=½ [(2.),/2.J Z [-{l+(n°,)2} -'/~ 
• \ Ool / 

--{1+ (Ell)2} -1/2 ~ Q1/ ~ (_~) 
\ Q0l / 

+{(K°')2+(Kf'):}-I/2 \ Q~, / -~o ' (9) 

where the summation extends over all secondary 
beams. Accordingly, when several secondary reflexions 
are simultaneously excited, each one can be treated in- 
dependently as regards its effect on RD. Therefore, if 
this result may be assumed to hold for spherical crys- 
tals, it is sufficient hereafter to treat only double dif- 
fraction, where convenient, on the understanding that 
approximate results for higher-order diffraction may be 
obtained by summing over secondary reflexions. 

We note that Re is obtained in principle by meas- 
uring rocking curves at two azimuths - for one of which 
multiple diffraction is favoured; for the other, pre- 
cluded. Hence it represents the proportional error due 
to multiple diffraction in a rocking-curve measurement 
performed under conditions that fail to preclude mul- 
tiple diffraction. 
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Lorentz and polarization factors 
In double diffraction three beams exist within the 

, crystal, and we denote their directions by unit vectors 
u0, u, and u2. To incorporate the correct Lp factors we 
must account for three scattering angles: cos-  ~ (u0. ut), 
COS -1 (U 0 • U2) and cos-~ (ul . u2)  denoted by 20m 20/< 
and 20/<, respectively. These three angles are indepen- 
dent; however if the angle ~ (Fig. 2) between the dif- 
fraction planes (u0,ul) and (u0,u2) is known, then 20/<, 
is determined through the relationship: 

cos 2OK, = cos 20H COS 20K + sin 20/~ sin 20/< cos ~0. 

On incorporating Lp factors, equation (8) takes the 

isfies that for planes K and, effectively, a third satisfies 
that for planes K'.  Only rays common to two sets can 
be subject to diffraction by two planes simultaneously. 
Therefore, if the sets do not coincide the same I0 will 
not be applicable to all terms in equations (5) and (6). 
Consider the incident beam to have uniform intensity 
over an angular range of divergence O about the central 
ray, and let the mosaic distribution of the crystal be 
of the form 

w(zt)  = ]( IZl  _< ~/2) 
o(I,41 > ~/2). 

form Vertical 
[ f divergence 

R = ½gTp~ 1 --pz.zK(K')K~KQr--pHK,(K)KHK, QK, / Rays diffracted 
Rays diffracted 1612 ~ " 
by operative ~ oy primary 

where 

p~:=-12-[1 -[-COS 2 20,]" pij(Ic)=-~[COS 2 20i+COS 2 20j Primary / \ \ \ \ \ \ \ \ '~Nl l l l l l l l  . /  \ ' diffraction \ .o.zont . 
+ (cos 20•-cos 20, cos 20j)2] • plane . . . . . . .  ~N]~"D[~m~ ~'_ | 

' divergence 
and . . . . . . . . . . . . .  ~ I 

Ku=[K ~ + K~] -'/2 with KH= 1, K r =  [cos 20r, \ ,-" / 
and - c o s  20 H cos 20r]/2 sin 20 H sin 20K 

K/<, = - [ cos  2OK--COS 20/<, COS 20H]/2 sin 20/<, sin 2OK. 

Beam divergence and mosaic spread 
The derivation of equation (8) rests on the implicit n 

assumptions that the incident beam is perfectly collim- (a) 
ated and the alignment is such that the operative re- 
flexion appearing in equation (6) is precisely satisfied. Primary 
For  a divergent incident beam one set of rays satisfies 
the Bragg condition for the planes H, another set sat- 0 2 

Operative 3 

(b) 

Fig. 3. Schematic depiction of incident beam of uniform inten- 
sity distribution over a range of divergence O, showing rays 
subject to diffraction by primary and operative planes. (a) 
Double diffraction. The central ray satisfies the Bragg con- 
dition for both sets of planes. (b) Higher-order diffraction, 
primary reflexion and operative reflexion 1 being precisely 

Fig. 2. Relationship between scattering angles and tp, the angle satisfied, while operative reflexions 2 and 3 are partially saris- 
between diffraction planes (uo, ux) and (uo, u2). fled. 



P. R. P R A G E R  567 

If &~r / and  the Bragg conditions for H and K are si- 
multaneously satisfied by the central incident ray, then 
the sets of rays will b'e identical; hence, I0 will apply 
to all terms of equations (5) and (6). If however, &>>r/, 
the sets of rays will in general overlap incompletely, 
the extent of overlap depending on the angles ~0 between 

0"4 

0"3 

0"2 

0"1 

-0"1 

-0"2 - 

Ray 
X-ray 

A = ~ 1  

~ 1  
"0 

;4 = 1 sin2 OH 

A=10 

(a) 

Rav X-ray 
0'3. s=3 

0"2. 4 = ~  
0"I 

//'A =y 
0 

sin2 O H 
-0"1 A=10 

(b) 

0"3 

0"2 

0"1 

-0"1 

Rav 
X-ray 

SA~ = 6 

= 2 ~ ~ -  o.s 1!o 
~ = 3  sin 2 0H 

A--10 

(c) 

Fig. 4. Proportional error, due to multiple diffraction, in 
rocking-curve measurements, as a function of the location 
of the primary reciprocal-lattice point. Parameter A governs 
the strength of the primary reflexion. For A = 10-3 indicated 
value of Ray must be multiplied by 10-3; for A=10-1 ,  by 
10. Diffraction: X-ray. (a) s = l ,  (b) s = 3 ,  (c) s=6 .  

pairs of diffraction planes. The latter situation is 
illustrated in Fig. 3(a). The overlap between sets of 
rays involved in diffraction by primary and operative 
planes is only complete in this case when ~0 = 0, or equi- 
valently, when u0, Ul and u2 are coplanar. 

If the operative and co-operative reflexions are not 
precisely satisfied (i.e. not satisfied by the central 
ray), they may still be satisfied by some rays, provided 
[c~- e0[ < 6/2, where e is the actual azimuth and o% is the 
correct azimuth. Where several operative reflexions are 
at least partially satisfied, some rays may be 
common to more than two reflexions and the 
situation illustrated in Fig. 3(b) may arise. Here 
the primary reflexion and operative reflexion 1 are 
precisely satisfied while operative reflexions 2 and 
3 are partially satisfied. A detector in position to accept 
the primary beam would receive sets of rays that had 
undergone single, double and triple diffraction. We 
have stated, however, that each operative reflexion may 
be treated independently of others that are simultane- 
ously excited. 

In the case &>>r/ we take Io(~/&) as the value of I0 
applicable to the last three terms in equation (6). This 
approximation implies that, whereas primary diffrac- 
tion occurs over a range r/in the horizontal plane and 
d in the vertical plane, multiple diffraction is restricted 
to a range r/ in both planes. (Deviations from ~0 =r//2 
have been ignored.)When the mosaic distribution is 
Gaussian, i.e. when 

W ( A )  = [(2rc)I/2~I] -a exp [ -  AZ/2q z] 

as shall be assumed hereafter, we replace r/, above; by 
1/g.(A multiple-diffraction method obtaning the distri- 
bution parameter r/ has been recently discussed by 
Caticha-Ellis, 1969.) It follows that R, equation (9), 
must be multiplied by l /g;  it is therefore independent 
of g but inversely proportional to the divergence range 
&. 

Expectation value of R 

We now calculate the expectation value of R as a func- 
tion of the strength and location of the primary reflex- 
ion. We assume the intensities of operative and cooper- 
ative reflexions to be determined entirely by their dis- 
tances from the origin of reciprocal space. A plausible 
assumption of this form is that all reflexions (except 
the primary reflexion) fall on the straight line of an 
auxiliary Wilson plot, (Rogers, 1965). The structure 
factors are then given by 

[F l2=q  exp [ - s  sin 2 0] (11) 

where s, the slope of the plot, depends on the wavelength 
temperature factor and the (Gaussian) unitary scattering 
factor profile, and q is the y intercept of the plot. 

The average is obtained by treating the distribution 
of operative reflexions as continuous, and then inte- 
grating R, weighted by the normalized probability 
function (d sec OH/2~z)p(r), over the entire range r = 0 -+ 
22 -1. A complication arises from the fact that, as men- 



568 E S T I M A T E  OF T H E  C O N T R I B U T I O N  OF M U L T I P L E  D I F F R A C T I O N  

tioned previously, 0K, is not determined by OH and OK; 
therefore, we reasonably assume that the values of ~0 are 
randomly distributed, and that for each H, K we may 
average over cp. For  6>>r/we obtain: 

Ray= (6/2rc)p(r) sec 0H 0 ~ " 

(12) 

TO exclude divergences we must place bounds on OK 0.4- 
and OK,: lower bounds assert that reciprocal-lattice 
points are at a finite distance from the origin, and upper 
bounds correspond to the denial of reflexions with 0.3. 
0 ~ re/2. Note that Ray is now independent of 6" while 
the intensity of each contribution to Ray is proportional 0.2. 
to 6 -1, the number of contributing reflexions is pro- 
portional to 6. 0-1. 

Ray represents the effect of multiple diffraction in the 
measurement of a rocking curve only in so far as the 
number of operative reflexions 'sampled' at a given ° / 
azimuth is representative of the distribution of opera- 

t tive reflexions. The validity of this calculation with re- -0.1 
spect to experiment would be improved if rocking 
curves were taken at a large number of randomly 
chosen azimuths, or if a single rocking curve were taken 
stepwise, the crystal being spun about the scattering 
vector I t  at each step. In the case of a powder the azi- 
muthal orientation of diffracting crystallites is expected 
to be random. 

R e s u l t s  and d i s c u s s i o n  

Ray was evaluated by numerical integration, as a sys- 
tematic function of the strength and location of the 0.6. 
primary reflexion. Typical results are shown in Fig. 4. 
Each curve corresponds to a different strength of the 0.5. 
primary reftexion relative to other reflexions; all other 
reflexions are assumed to conform to equation (11) and 

0.4. 
the exceptional primary reflexion is given by 

IFHI2=Aq exp [--s sin 2 OH], (13) 0.3, 
which is 'weak' or 'strong' according to whether A < 1 
or A > 1. Apart  from constants affecting only the or- 0.2. 
dinate scale of Fig. 4, the only factor upon which Ray 
depends is the slope s of the auxiliary Wilson plot. The 
variation of Ray with s is shown in the sequence (a), 0.1. 
(b), (c) of Fig. 4. 

Comparison of curves A = 10 -1 and A = 10 -3 shows 
that  for weak reflexions Ray is nearly proportional to 
A -1. This result follows from the dominance of the -0.1. 
third (Umweganregung) term over the first two (Auf- 
hellung) terms in equation (8). 

Fig. 5 is a graph of the integrand of equation (12) -0.2- 
versus sin 0/c, plotted for several values of sin20H and 
corresponding to points on the curve A = 1 of Fig. 4(e). -0.a. 
It illustrates how an 'average' primary reflexion tends 
to relinquish intensity to outer reflexions- reflexions of 
the same strength but located further from the origin 
- and to gain intensity from inner reflexions. 

In plotting Figs. 4 and 5 we have omitted constants, 
and factors that depend on the crystal. To obtain ab- 

solute values of Ray and dRav/d sin 0~:, we multiply 
the ordinate scale by 

( e2 ] 2 1 
C =  16 aHT' Y. [J~(0)] 2 , (14) 

T \ m c  2 1 i 

dRav/d(sin OK) 

f) 

n OK 

Fig. 5. Curves showing the distribution in reciprocal space of 
contributions to Ray for a primary reflexion of medium 
strength whose location is given by: (a) sin20n=0.05, (b) 
sin20n=0"15, (C) sin20rt=0"25, (d) sin20H=0"50, (e) 
sinZ0H=0"75, (f) sinZ0n =0.90. Integrals under the curves 
correspond to points on the curve A = 1 of Fig. 4(a). 

Ray 
Neutron 

s = l  

1=10-3 

/ 

0"5 1 "0 
= ~  sin2 (~H 

A=10 

Fig. 6. Proportional error, due to multiple diffraction, in 
rocking-curve measurements, as a function of the location 
of the primary reciprocal-lattice point. Parameter A governs 
the strength of the primary reflexion. For A = 103 indicated 
value of Ray must be multiplied by 103; for A=10 -1, by 10. 
Diffraction: neutron, s= 1, 0= 10. 
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where3q is the atomic scattering factor of the ith atom 
in the unit cell. For V~ 10 -22 cm 3, aH~ 1, ~ f 2  ~ 103 and 
•~ 10 -2 cm we obtain C ~  10 -2. Referring to Fig. 4, 
the maximum value of IRavl is then less than 1% 
for strong and medium reflexions, while for weak 
reflexions it may easily exceed 100 %. For instance, we 
have calculated that the value of Ray for the inordin- 
ately 'weak' 002 reflexion in CaF2 might be about 
100%, while the values for other 'weak' reflexions 
might be from 2 to 5 % (Cooper, 1970). Note that the 
values are almost independent of wavelength; for 
whereas the relative change in intensity due to a single 
operative reflexion [R of equation (8) is proportional to 
j.-3], the number of operative reflexions contributing to 
Ray is proportional to 23 cos -1 [1--(~/2dH)2] 1/2, where 
da is the spacing of the primary planes. In other words, 
the wavelength does not affect the scale of Fig. 4 but 
determines only sinEOH for the primary reflexion under 
consideration. 

Similar calculations were made for neutron diffrac- 
tion, in which case polarization factors are unity, the 
assumption of weak absorption is usually well justified, 
s is determined by the wavelength and the temperature 
factor, and C of equation (14) is written in terms of neu- 
tron scattering lengths. Fig. 6 shows the result of the 
neutron calculation performed with. the same value of 
s as applies to Fig. 4(a). 

For a crystal with a known structure the approxima- 
tions inherent in equations (1 l) and (13) may be im- 
proved; also, calculations that treat the effect of vari- 
ous types of reflexions on primary reflexions, whose 
'strength' is consonant with the type to which they 
belong, may be performed with greater consistency 
than has been the case here. The procedure to be fol- 

lowed then, is to calculate independently, and then add, 
the contributions of the several types of reflexions on 
primary reflexions of a particular type. The correct 
statistics are introduced by changing a/¢ of equation (3) 
to all, K, K', where H, K and K'  represent the types of 
the primary, operative and cooperative reflexions. 

I thank Dr Z. Barnea for his generous advice and I 
acknowledge the financial support of a Commonwealth 
Postgraduate Award. 
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It is shown that the anomalous scattering of either X-rays or thermal neutrons provides a method of 
separating the individual static displacements due to AA and BB pairs of atoms in a solid solution. 

Introduction 

It is well known that the static displacement of the 
atoms from the nodes of the average lattice causes 
diffuse scattering of X-radiation. The effect of the root 
mean square of the static displacements is to reduce 
the intensity of the Bragg refiexions in a manner 

similar to thermal diffuse scattering. The intensity lost 
in the Bragg reflexions is conserved by the resultant 
Huang (1947) diffuse scattering which is distributed 
close to the reciprocal-lattice points. The presence of 
short-range order (SRO) in a solid solution manifests 
itself as modulations in intensity of the Laue mono- 
tonic diffuse scattering with broad peaks at positions 


